THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Tutorial Classwork 1

1. Recall that for every set X, the cocountable topology is defined by

 $\mathfrak{T} = \{\emptyset, X\} \cup \{G \subset X \mid X \setminus G \text{ is countable}\}$

- (a) If X is an uncountable set, is the cocountable topology separable?
- (b) * Show that the the cocountable topology is not C_I .

2. Let $X = \mathbb{R}$ and $K = \{\frac{1}{n} \mid n \in \mathbb{N}\}$. The K-topology T_K is generated by the base

$$B = \{(a,b) \mid a, b \in \mathbb{R}, a < b\} \cup \{(a,b) \setminus K \mid a, b \in \mathbb{R}, a < b\}$$

- (a) Show that B is a base.
- (b) Let T_l be the lower limit topology on X. Show that $T_l \not\subset T_K$ and $T_K \not\subset T_l$.
- 3. Let (X,\mathfrak{T}) be a topological space and $A \subset X$. Define the frontier (or the boundary) of A by
 - (i) $\operatorname{Frt}(A) = \overline{A} \cap \overline{X \setminus A}$; or
 - (ii) $\operatorname{Frt}(A) = \{x \in X \mid \text{for any } U \in \mathfrak{T} \text{ with } x \in U, \text{ we have } U \cap A \neq \emptyset \text{ and } U \cap (X \setminus A) \neq \emptyset.\}$
 - (a) Show that $x \in \overline{A}$ if and only if for any $U \in \mathfrak{T}$ with $x \in U$, we have $U \cap A \neq \emptyset$.
 - (b) Show that two definitions of frontier are equivalent.
 - (c) Show that A is open if and only if $A = \overline{A} \setminus \operatorname{Frt}(A)$.
 - (d) Show that $Int(A) \cap Frt(A) = \emptyset$.
 - (e) Show that $\operatorname{Frt}(A) = \emptyset$ if and only if A is both open and closed.
 - (f) * Give an example of a set A with $Frt(A) \neq Frt(Frt(A))$.